“Fault Tolerant Sensor Placement Optimization with Minimum Detection Probability Guaranteed”

Pakpoom Hoyingcharoen and Wiklom Teeraparkajorndet
Department of Electrical Engineering
Prince of Songkla University
Songkhla, Thailand

Pakpoom Hoyingcharoen
12/10/2011
Place the minimum number of sensor nodes (SNs) over a planar grid to guarantee a desired minimum detection probability after some sensors have failed.
Fault Tolerant Sensor Placement Optimization with Minimum Detection Probability Guaranteed

Outline

1. Introduction to Fault Tolerance in Sensing Coverage
2. Our Fault Tolerant Coverage
3. Problem Statement
4. Problem Formulation
5. Optimization Tool: Genetic Algorithm (GA)
6. Fault Tolerant Sensor Placement Optimization on GA
7. Experimental Results
8. Conclusion
(traditional) fault tolerance in sensing coverage in wireless sensor networks (WSNs)

“k-coverage”

area or point of interest is covered by k different sensor nodes (SNs)

3-covered area

sensing range

\bullet : SN

: sensing coverage of 1 SN

(binary sensing model: object inside sensing range detected with probability of 1)
Motivation: probabilistic sensing model more suited for object/signal detection SNs than binary sensing model (signs such as thermal energy, acoustic waves, radio waves, light waves, magnetic field*, seismic **) for fault tolerant coverage

Our Fault Tolerant Coverage

Probabilistic Sensing Model → New Kind of Fault Tolerant Coverage

Minimum Detection Probability across sensing field after SN failures as the performance metric for fault tolerant coverage

Place the **minimum number of sensor nodes (SNs)** over a planar grid to guarantee a desired min detection probability after some sensors have failed.
Problem Formulation

Sensor Deployment Area

- 2-D uniform grid
- SNs placed on grid points
- Detection probability calculated at each grid point
- Distance between adjacent grid points: d

Figure 1. Sensor deployment area in 2-D uniform grid
Fault Tolerant Sensor Placement Optimization with Minimum Detection Probability Guaranteed

Problem Formulation

Objective Function

\[
\min_{\text{placement}} \beta \cdot (1 - M) + n \cdot M
\]

\(\beta \) : a number sufficiently larger than the total number of grid points in deployment area

\[M = \begin{cases} 1 & \text{Minimum detection probability after failures } > \text{ threshold} \\ 0 & \text{Otherwise} \end{cases} \]

\(n \) : a number of SNs deployed
Problem Formulation

Cumulative Detection Probability at a Grid Point

\[P(D_j) = 1 - \prod_{i=1}^{n} \{1 - P(S_i)\} \]

- \(P(D_j) \): detection probability at grid point, \(j \)
- \(P(S_i) \): probability that an SN \(i \), detects the target at grid point \(j \).
Problem Formulation

Sensing Model
(based on Gaussian probability distribution)

\[
P(S_i) = e^{-\frac{\tau_i^2}{2\alpha_s^2}}, \tau_i \in [0, d_s]
\]

\(\tau_i\): distance between a SN \(i\) and a grid point \(j\)

\(d_s\): the maximum detection range of the SNs

\(\alpha_s\): dictates the shape of the detection probability curve

Figure 2. Local detection probabilities on 50 x 50 grid points based on Gaussian sensing model
Fault Tolerant Sensor Placement Optimization with Minimum Detection Probability Guaranteed

Optimization Tool: Genetic Algorithm (GA)

Genetic Algorithm (GA)

- Population become fitter and fitter

* Fittest organisms (chromosomes) selected

Population of Species

Reproduction through Crossover and Mutation

Reasons for choosing GA:

- non-differentiable
- combinatorial
- large solution space

\[\text{Min } \beta^* (1 - M) + n^* M \]

* brainz.org
Fault Tolerant Sensor Placement Optimization with Minimum Detection Probability Guaranteed

Solution is in the form of bitstring:
0 means no SN placed at grid point
1 means 1 SN placed at grid point

GA fitness function same as the objective function of the problem

\[\min \beta \cdot (1 - M) + n \cdot M \]
Fault Tolerant Sensor Placement Optimization with Minimum Detection Probability Guaranteed

Experimental Results

Fitness Function in GA:

$$\text{Min} \ \beta \cdot (1 - M) + n \cdot M$$

$$P(S_i) = e^{\frac{-\tau_i^2}{2\alpha_s^2}}, \tau_i \in [0, d_s]$$

- Area: 50 x 50 grid points
- Distance between adjacent grid points: 7.2 units
- Maximum detection range d_s: 195 units
- α_s: 68 units
- Minimum detection probability threshold: 93%
- β: 5000

* 93% is the min detection prob from placing 16 SNs uniformly
Experimental Results

Initial Pop: 8, Pop Size: 300 Elite:20
Crossover: 0.85, Scattered
Mutation: 0.01, Uniform
Rank, Stochastic Uniform
Gen Limit: 200; Stall Gens:14

Num of SNs placed = 29, SN @ (6, 20) or 270 fails
Avg Det Prob @ all GPs after SN failure = 99.67%
Min Det Prob after SN failure = 93.49% (> threshold 93%)

* 93% is the min detection prob from placing 16 SNs uniformly

Local Detection Prob’s after worst case of one SN failure
Fault Tolerant Sensor Placement Optimization with Minimum Detection Probability Guaranteed

Experimental Results

Figure 6. Best placement solution by GA for two SN failures

Initial Pop: 13, Pop Size: 200, Elite: 10
Crossover: 0.85, Scattered Mutation: 0.01, Uniform Rank, Stochastic Uniform
Gen Limit: 200; Stall Gens: 14

Num of SNs placed = 38
SN 1@ 627(13,27) fails and SN 2@ 130 (3,30) fails
Avg Det Prob @ all GPs after SN failure = 99.74%
Min Det Prob after 2 SN failures= 93.10% (> threshold 93%)

* 93% is the min detection prob from placing 16 SNs uniformly
Fault Tolerant Sensor Placement Optimization with Minimum Detection Probability Guaranteed

Experimental Results

Figure 7. Uniform placement of 32 SNs and local detection probabilities for worst case of one SN failure

*Uniform placement of 16 SNs results in 93% min detection prob, so *uniform placement of 32 SNs: provides fault tolerance for one SN failure
(*uniform placement of 48 SNs: provides fault tolerance for two SN failures)

Uniform Placement of 32 SNs
16th SN @ fails
Avg Det Prob w/ all 32 SNs = 99.82%
Min Det Prob w/ all 32 SNs= 99.57%
Avg Det Prob after SN failure = 99.78%
Min Det Prob after SN failure= 98.28%

Local Detection Prob’s for 16 SNs Uniformly Placed

Local Detection Prob’s for 32 SNs after worst case of one SN failure
• Proposed **new** kind of fault tolerant coverage: minimum detection probability

• With GA, **successfully** found optimal placement that employed as few SNs as possible while still guaranteed the required minimum detection probability

• Experimental results: Our sensor placements **used fewer SNs** to guarantee the minimum detection probability than uniform placements

• Future work: **analytical study** of coverage to further validate results from GA